SIEMENS

世纪楼宇

济南工达捷能科技发展有限公司

西门子暖通空调产品 使用手册

济南工达捷能科技发展有限公司

地 址:济南高新技术开发区,环保科技园B座中2008-2016室

联系人: 杨忠祥

TEL: 0531-67807177\$\$810 FAX: 0531-67809899 M: 13853113058

网址: www.wenkongfa.com 邮箱: YZX1117@yahoo.com.cn

SIEMENS 4⁴³⁰

Three-port seat valves with flange, PN16

VXF40...

Three-port seat valves with flange, PN16

- · For use as a mixing or diverting valve
- Grey cast iron GG-25
- DN15 ... DN150 mm
- k_{vs} 1.9 ... 300 m³/h
- 20 mm or 40 mm stroke
- Can be fitted with actuator types SKB..., SKC..., SKD... or SQX..

Application

For use as a **control valve** in heating, ventilation and air conditioning systems in *mixing* or *diverting* applications.

For closed circuits only.

Media

Standard version with standard stem seal for:

Chilled water	
Low temperature hot water	
High-temperature hot water	−25 +130 °C
Water with anti-freeze 1) 2)	
Brine 1) 2)	

- Media below 0 °C: A stem heater, type ASZ6.5, is required to prevent the valve stem from freezing in the gland.
- 2) Water with anti-freeze additives, and brine: Up to $-10~^{\circ}$ C to DIN 3158 (class I stress) or up to $-25~^{\circ}$ C to DIN 3158 (class II stress)

Standard version

Туре	DN	k _{vs}	S _v	Δp _{vmax}	
	[mm]	[m ³ /h]		Mixing [kPa]	Diverting [kPa]
VXF40.15-1.9	15/10	1.9			
VXF40.15-3	15	3			
VXF40.25-5	25/20	5	> 50	100	100
VXF40.25-7.5	25	7.5			
VXF40.40-12	40/32	12			
VXF40.40-19	40	19			
VXF40.50-31	50	31	> 100		100
VXF40.65-49	65	49			
VXF40.80-78	80	78		100	70
VXF40.100-124	100	124			
VXF40.125-200	125	200	> 100		60
VXF40.150-300	150	300			50

DN = Nominal diameter k_{vs} = Nominal flow to VDI2173 S_v = Rangeability to VDI2173 Δp_Vmax = Maximum admissible pressure differential across control path A – AB (mixing) or AB – A (diverting) in relation to the full stroke

Accessories

ASZ6.5 Electric stem heater, AC 24 V, required for media below 0 °C

Ordering

When ordering, please specify the quantity, product name and type code.

Example: 2 three-port seat valves, PN16 Type VXF40.50-31

Delivery

- The valves and actuators are packed separately.
- No counter-flanges or flange seals are supplied with the valves.

Compatibility

Electric actuators

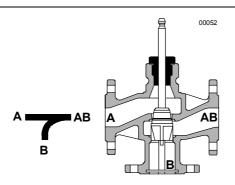
Landis & Staefa actuator types SKB..., SKC..., SKD... and SQX are available in various versions:

- AC 24 V / AC 230 V with 3-position control signal
- AC 24 V with a DC 0 ...10 V or DC 4 ... 20 mA proportional control signal

		Actuators							
		SQ	X	SKD		SKB		SKC	
Valves	H ₁₀₀	Mixing	Diverting	Mixing	Diverting	Mixing	Diverting	Mixing	Diverting
	[mm]				Δp_{max}	[kPa]			
VXF40.15-1.9									-
VXF40.15-3								-	-
VXF40.25-5								-	-
VXF40.25-7.5	20	100	100	100	100	100	100	-	-
VXF40.40-12								-	-
VXF40.40-19								-	-
VXF40.50-31								-	-
VXF40.65-49		80	60		60			-	-
VXF40.80-78		60	40	80	40		70	ı	-
VXF40.100-124		-	-	-	-	-	-		70
VXF40.125-200	40	-	-	-	-	-	-	100	60
VXF40.150-300		-	-	-	-	-	-		50
Data sheet		N4554 N4561		N4564					

 H_{100} = 100 % stroke of valve and actuator

 Δp_{max} = Maximum admissible pressure differential across control path A – AB (mixing) or


AB – A (diverting) across the whole actuating range of the motorised valve.

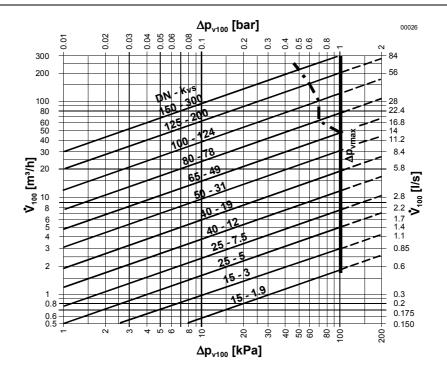
Pneumatic actuators

Landis & Staefa pneumatic actuators are available on request from your local office. Pneumatic actuators are only suitable for applications where the VXF40... valves are used as mixing valves.

Application

Valve cross-section

Guided parabolic plug, integrated into the valve stem.


The seat is machined into the valve body.

Disposal

The valve must be dismantled and separated into its various constituent materials before disposal.

Sizing

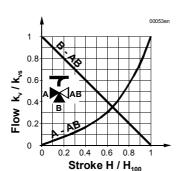
Sizing chart

100 kPa = = 1 bar ≈ 10 mWG

1 m³/h = 0.278 kg/s water at 20 °C

= Δp_v max = Maximum admissible pressure differential across **control path A – AB of the mixing valve** (with actuator) applicable to the entire stroke range.

= Δp_Vmax = Maximum admissible pressure differential across **control path AB – A of the diverting valve** (with actuator) applicable to the entire stroke range.


 $\Delta p_{v^{100}} \quad = \text{Pressure differential across the fully open valve across the control path} \\ (\text{A} - \text{AB for mixing or AB} - \text{A for diverting applications}) \text{ at flow } V_{100}$

= Flow in m³/h

 V_{100}

Valve characteristic

The VXF40... valve should preferably be used in mixing applications.

Through-port

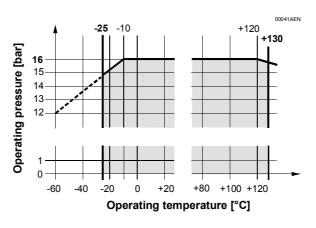
0 ... 30 % Linear

30 ... 100 % $n_{ql} = 3$ to VDI/ VDE2173

Bypass 0 ... 100 % Linear

Mixing

Flow from port A and port B to port AB


Diverting

Flow from port AB to port A and port B

Port AB = Constant flow Port A = Variable flow

Port B = Bypass (variable flow)

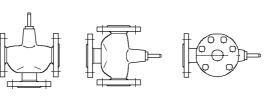
Operating pressure and temperature

Operating pressures to ISO7268 and EN133 at operating temperatures of -25 ... +130 °C to DIN4747 and DIN3158

Engineering

- In heating systems, the valve should preferably be installed in the return, where the seal will be exposed to lower temperatures, so extending its service life.
- Water should be of the quality recommended in VDI 2035
- Recommendation: To increase the reliability of the valve, a **strainer** should be installed at the valve inlet.

Stem heater


With media temperatures below 0 °C, an electric stem heater, type ASZ6.5 is required to prevent the valve stem from freezing in the gland. For safety reasons, the stem heater is designed to operate with a voltage of AC 24 V.

Mounting

The valve and actuator are easily assembled directly on site. There is no need for special tools or calibration.

Mounting instructions are enclosed with the valve.

Orientation

Permissible

Not permissible

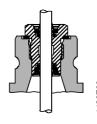
. Mixing: from A and B to AB

• Diverting: from AB to A and B

Commissioning

The actuator must be commissioned only with the actuator correctly assembled.

Stem retracted: Through-port opens, and bypass closes
Stem extended: Through-port closes and bypass opens


Maintenance

Before servicing the valve, switch OFF the pump and power supply, close the main shut-off valve in the pipework, release pressure in the pipes and allow them to cool down completely. If necessary, disconnect electrical connections from terminals. The valve must be re-commissioned only with the actuator correctly assembled.

Stem seal

This can be replaced without removing the valve from the pipework. The pipes must be cool and free of pressure, and the stem surface must be in perfect condition. If the seal is damaged in the vicinity of the seal, the entire stem/plug unit must be replaced. Contact your local office for details.

Spare parts

Replacements for EPDM O-ring seal including flat-faced copper seal, for chilled water, low temperature hot water, high temperature hot water, and brine $-25 \dots +130$ °C

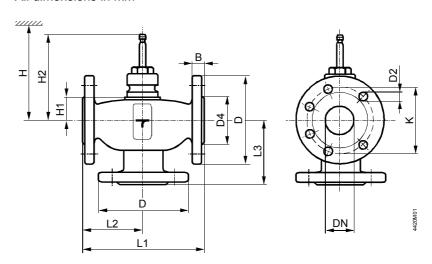
VXF40... DN15 ... DN80 (Stem diameter 10 mm) **4 284 8806 0** VXF40... DN100 ... DN150 (Stem diameter 14 mm) **4 679 5629 0**

Warranty

The Landis & Staefa warranty is invalidated by the use of actuators from other manufacturers.

The technical data in relation to Δp_{max} , Δp_{s} , leakage rates, noise and service-life is valid only in conjunction with the Landis & Staefa actuators listed in the table under "Compatibility".

Technical data


Operating data	PN class	PN16		
	Valve characteristic			
	– Through-port0 30 %	Linear		
	30 100 %	n_{gl} = 3 to VDI / VDE2173		
	_ Bypass 0 100 %	Linear		
	Leakage			
	Through-port	0 0.02 % of k _{vs} value to VDI /		
	Bypass	VDE2174		
		0.5 2 % of k _{vs}		
	Admissible pressure	1600 kPa (16 bar) to ISO7268 / EN1333		
	Operating pressure	To DIN4747 / DIN3158		
		in the range –25 +130 °C		
	Flange connections	To ISO7005-2		

Materials

Stroke	DN15 DN80	20 mm
	DN100 DN150	40 mm
Valve body		GG-25 to DIN EN 1561
Stem		Stainless steel
Plug	DN15 DN65	Brass
	DN80 DN150	Bronze
Seal		Brass
Sealing material		EPDM O-rings

Dimensions

All dimensions in mm

DN	В	D	D2	D4	H1	H2	K	L1	L2	L3	Weight
[mm]		Ø	Ø	Ø			Ø				[kg]
15	14	95	14 (4x)	46	40.5	137	65	130	65	65	4.2
25	16	115		65	34	130.5	85	160	80	80	4.6
40	18	150		84	39	135.5	110	200	100	100	8.0
50	20	165	19 (4x)	99	39	135.5	125	230	115	115	11.7
65	20	185		118	60	156.5	145	290	145	145	14.7
80	22	200		132	60	156.5	160	310	155	155	18.8
100	24	220	19 (8x)	156	93	209.5	180	350	175	175	29
125	26	250		184	104	220.5	210	400	200	200	42
150	26	285	23 (8x)	211	120	236.5	240	480	240	240	61

Overall installation height

DN	Н							
[mm]	SQX	SKD	SKB	SKC				
15	> 465	> 540	> 615	-				
25	> 459	> 534	> 609	-				
40	> 464	> 539	> 614	-				
50	> 464	> 539	> 614	-				
65	> 485	> 560	> 635	-				
80	> 485	> 560	> 635	-				
100	-	-	-	> 666				
125	-	-	-	> 677				
150	-	_	-	> 693				

DN = Nominal diameter

H = Total height of actuator plus minimum clearance from wall or ceiling for mounting, connection, operation, maintenance etc.

H1 = Installation height from middle of pipe, for fitted actuator (upper edge)

H2 = Valve in "Closed" position, i.e. with stem fully extended